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On Two Kinetic Models for Chemical Reactions:
Comparisons and Existence Results
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Two kinetic theories for bimolecular chemical reactions in dilute gases are ana-
lyzed and compared. Reactive scattering kernels are constructed, satisfying mi-
croreversibility principles and yielding a physically plausible link between the
two models. Mathematical properties and in particular the role played by mi-
croreversibility conditions and by certain elastic collisional terms on existence
of solutions are also investigated.

KEY WORDS: Kinetic theory of gas mixtures; chemical reactions; hard-sphere
systems.

1. INTRODUCTION

A microscopic description of chemical reactions in dense phase requires
knowledge of the coupling between the dynamics of the solute molecules
and the dynamics of the solvent molecules. This very challenging goal
is avoided in the models where the solute molecules are governed by
diffusive type equation (Fokker–Planck, Langevin, or Smoluchowski equa-
tions), with the reactive events generated by the boundary conditions, and

1Dipartimento di Matematica, Università degli Studi di Parma, 43100 Parma, Italy; e-mail:
maria.groppi@unipr.it

2Department of Mathematics, California State University, Northridge, California 91330,
USA; e-mail: jacek.polewczak@csun.edu

3Work performed in the frame of the activities sponsored by MURST, by the University of
Parma, by the National Group for Mathematical Physics (Italy) and by the California State
University in Northridge. We gratefully acknowledge helpful discussions with Prof. G. Spi-
ga.

4J. P. thanks Prof. G. Spiga for the hospitality and encouragement during the author’s visits
to the Department of Mathematics of the University of Parma.

211

0022-4715/04/1000-0211/0 © 2004 Springer Science+Business Media, Inc.



212 Groppi and Polewczak

with the dynamics of the solvent molecules absent. Also, in the transition
state theory the knowledge of dynamics of particles is replaced in favor
of calculating only equilibrium rate coefficients, while the solvent effects
appear in the free energy of the transition state.

The kinetic models considered in this note consider chemical reactions
in dilute gases only, where the assumption of uncorrelated binary colli-
sions is used to obtain the Boltzmann-type kinetic equations. As in the
above mentioned models, presence of the solvent is avoided. However, in
contrast to the Fokker–Planck approach for the solute molecules and the
transition state theory, two models in the note deal with the microscopic
(nonequilibrium) basis for the macroscopic chemical action law and the
development of the kinetic theory of chemical reactions that has built-in
trend to equilibrium (H -function).

It was first Prigogine and Xhrouet(1) who considered the kinetic the-
ory of chemically reacting gases where the reactive terms are perturbations
of nonreactive collisional terms. This approach is only justified when the
cross sections of gas phase reactions are much smaller than those for non-
reactive events. In all other cases, the reactive and nonreactive collisional
terms must be treated on equal par. The article by Kapral(2) reviews many
theories introduced after the work of Light et al.(3)

In this work we compare two kinetic models for bimolecular revers-
ible chemical reactions in dilute gases, where the reactive and the nonre-
active terms are treated on equal par. In both models the molecules are
structureless point masses, with one internal state of excitation, that expe-
rience a strong short-range repulsion due to the chemical activation bar-
rier. The reactions take place only if the kinetic energy of the colliding
pair of molecules surmounts this barrier; otherwise the molecules scatter
elastically. Although, simplistic in its nature, these types of models can be
helpful in studying certain aspects of condensed phase chemical reactions.

In ref. 4, Rossani and Spiga constructed a formal reactive kinetic the-
ory (based on work in refs. 3 and 5) that has built-in trend to equilibrium
(H -Theorem). This theory, based on the Boltzmann equation is a natu-
ral extension of classic gas kinetic theory to nonconservative interactions.
Rossani–Spiga model is compared here with the simple reacting spheres
(SRS) kinetic theory, considered by Marron in ref. 6 and Xystris and Dah-
ler in ref. 7. In the SRS model both elastic and reactive interaction are
hard-spheres-like. The SRS model has its origin in particle system dynam-
ics, since it can be derived from the Liouville equation or from the cor-
responding BBGKY hierarchy equations (see, refs. 2 and 8). Additional
bibliography on this matter can be found in ref. 9.

The paper is organized as follows. First, the Rossani–Spiga and the
SRS kinetic theories are presented and discussed in Sections 2 and 3,
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respectively. In Section 4, we combine the techniques developed in refs.
4 and 7 to construct new reactive scattering kernels corresponding to the
hard-spheres-like model. The model distinguishes between elastic and reac-
tive mean hard-spheres’ diameters and, in contrast to the SRS model,
allows for a nonzero mass exchange in reactions. The reactive scattering
kernels satisfy the microreversibility conditions; furthermore, they reduce
themselves to reactive kernels of hard-spheres type, when no net mass and
no hard sphere diameter changes are present in the reactions. These are
the first, physically plausible, scattering kernels that satisfy the required
microreversibility conditions of the Rossani–Spiga kinetic theory. We also
discuss a new variant of the reactive kinetic theory that has its roots in
the framework of the SRS and the Rossani–Spiga models.

Finally, in Section 5, we present detailed analysis of the properties
of the Rossani–Spiga model, with particular emphasis on those proper-
ties that do not require the microreversibility conditions (10). We also dis-
cuss importance of the microreversibility conditions (10) and inclusion of
certain elastic collisional terms on existence of the equilibrium solutions.
Finally, we state a global in time existence result for the system (2)–(3)–
(11).

2. THE ROSSANI–SPIGA KINETIC THEORY

Rossani and Spiga have shown in ref. 4 that one can construct a
kinetic theory of chemically reactive dilute gases with built-in trend to
equilibrium (H -Theorem). They considered a four component mixture of
structureless particles A1, A2, A3, A3 and the chemical reactions of the
type

A1 +A2 �A3 +A4. (1)

In addition to the bimolecular chemical reactions (1), the elastic collisional
events Ai + Aj � Ai + Aj , i, j = 1, . . . ,4 have also been included in the
model. In fact, as we will show later, inclusion of at least some elastic col-
lisions appears to be necessary for gas equilibration.

The reactions (1) can occur only when the kinetic energy associated
with the relative motion along the line of mass centers of particles exceeds
the activation energy. This threshold energy depends on the internal ener-
gies Ei of particles Ai .

For each i (i =1, . . . ,4), let fi(t, x, v) denote the one-particle distribu-
tion function of the ith component of the reactive mixture. The function
fi(t, x, v) changes in time due to free streaming and collisions (both elastic
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and reactive), and at time t , it represents the number density of particles
of species i at point x with velocity v. The system has the form

∂fi

∂t
+v · ∂fi

∂x
= JE

i +JR
i , fi(0, x, v)=fi0(x, v), (x, v)∈D ×R

3, (2)

where fi0, i = 1, . . . ,4 are suitable nonnegative initial conditions. The gas
mixture is confined in D ⊆ R

3. We consider two choices for the set D :
D = R

3, or D being a three-dimensional torus [0,L]3, L > 0. The latter
choice corresponds to case of the periodic boundary conditions on [0,L]3.
Here, JE

i , JR
i , i =1, . . . ,4, denote the elastic and reactive collisional terms,

respectively. They are given by

JE
i =

4∑
j=1

JE
ij =

4∑
j=1

∫∫
R3×S2

Bij (g,� ·�′)

×
[
fi(t, x, v

ij
ij )fj (t, x,w

ij
ij )−fi(t, x, v)fj (t, x,w)

]
dw d�′

= JE+
i −JE−

i (3)

and

JR
i =

∫∫
R3×S2

�(g2 − δhk
ij )

[
µij

µhk

ghk
ij

g
B

ij
hk(g

hk
ij ,� ·�′)fh(t, x, vhk

ij )fk(t, x,whk
ij )

−Bhk
ij (g,� ·�′)fi(t, x, v)fj (t, x,w)

]
dw d�′, (4)

where � is the unit vector in the direction of the relative pre-collisional
velocity V = v −w, whereas g = |v −w| denotes its modulus; in this way,
the vector V is split as V = g�, with g = |V | and |�| = 1. Analogously,
�′ denotes the unit vector in the direction of the relative post-collisional
velocity. Finally, � is the Heaviside step function, and µij = mimj/(mi +
mj) are reduced masses of the colliding pairs, with mi and mj being the
masses of particles from ith and j th species, respectively.

In (4), the pre-collisional pairs (i, j) and the post-collisional pairs
(h, k) are associated with the following set of indices (i, j, h, k),

(1,2,3,4), (2,1,4,3), (3,4,1,2), (4,3,2,1). (5)

The quadruplets in (5) represent all possible reactive encounters. We note
that the reactive terms are represented by a single collision integral. This
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is due to the fact that there is a unique chemical reaction in which species
i is gained or lost.

The threshold energies are given by δhk
ij = 2�Ehk

ij /µij , with �Ehk
ij =

Eh +Ek −Ei −Ej defined as

�Ehk
ij =

{
�E for (i, j, h, k)= (1,2,3,4), (2,1,4,3);

−�E for (i, j, h, k)= (3,4,1,2), (4,3,2,1),
(6)

where �E > 0. Finally, the post-collisional velocities appearing in (4) are
defined by

vhk
ij = µij

mj

v + µij

mi

w + µhk

mh

ghk
ij �′, whk

ij = µij

mj

v + µij

mi

w − µhk

mk

ghk
ij �′, (7)

with

ghk
ij =

[
µij

µhk

(g2 − δhk
ij )

]1/2

. (8)

We observe that the expressions in (7) also include post-collisional veloci-
ties appearing in elastic collisional terms (3). Indeed, in this case, (h, k)=
(i, j) and δ

ij
ij = 0, yielding g

ij
ij = g. For simplicity, we also eliminated the

upper indices in the elastic scattering kernels.
The reactive and elastic scattering kernels B

ij
hk are assumed to satisfy

the following (time reversal) symmetry relations,

Bhk
ij (g,� ·�′)=Bkh

ji (g,� ·�′)=Bhk
ji (g,−� ·�′)=Bkh

ij (g,−� ·�′),
Bij (g,� ·�′)=Bji(g,� ·�′)=Bji(g,−� ·�′)=Bij (g,−� ·�′).

(9)

The scattering kernels are related to the elastic and reactive differen-
tial cross-sections(4), Ihk

ij (g,� · �′), through the formulas Bhk
ij (g,� · �′)=

gIhk
ij (g,� ·�′).

Although the system (2)–(3)–(4) has built-in conservation laws, the
H -Theorem in ref. 4 is obtained under additional microreversibility con-
ditions on the reactive scattering kernels Bhk

ij ,

µ2
ij g Bhk

ij (g,� ·�′)=µ2
hk ghk

ij B
ij
hk(g

hk
ij ,� ·�′). (10)

Conditions (10) relate the differential cross-sections for forward and
reverse reactions and have their roots in the symmetry of the Schrödinger
(or Liouville) equation under time reversal (see, ref. 3).
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When the microreversibility conditions (10) are assumed, the reactive
collisional terms (4) have the following simpler form:

JR
i =

∫∫
R3×S2

�(g2 − δhk
ij )Bhk

ij (g,� ·�′)

×
[(

µij

µhk

)3

fh(v
hk
ij )fk(w

hk
ij )−fi(v)fj (w)

]
dw d�′

= JR+
i −JR−

i . (11)

The system (2), although quite general in its scope, has not yet been com-
pared to other known reactive kinetic theories. Furthermore, except for
one example given in ref. 10 (or ref. 11), it has not been known whether
the microreversibility conditions (10) can be satisfied for other, more realis-
tic, particle potentials. In the next section, we compare the Rossani–Spiga
model (2) to the SRS model(7). In Section 4, we construct the reactive
scattering kernels, Bhk

ij , (satisfying the microreversibility conditions (10))
for the generalization of the SRS model in which mass exchanges before
and after reaction are allowed.

3. THE KINETIC THEORY OF SIMPLE REACTING SPHERES

The kinetic theory of SRSs has been proposed by Marron(6) and fur-
ther developed by Xystris and Dahler(7) (see also refs. 2 and 8). The SRS
is a natural extension of the hard spheres collision model that, in the
dilute gas limit, can be analyzed from the point of view of Rossani–Spiga
model. In the SRS model, as well as in the Rossani–Spiga model, internal
degrees variables do not appear explicitly in the collisional integrals. Fur-
thermore, the SRS reduces itself to the revised Enskog equation (or to the
hard-sphere Boltzmann equation in the dilute gas limit), when the chemi-
cal reactions are turned off.

In the SRS model, both elastic and reactive interactions take place
only when the particles are separated by a distance σrs = 1

2 (dr +ds), where
di denotes the diameter of the ith particle. Additionally, for the reactive
collision between particles of species r and s to occur, the kinetic energy
associated with the relative motion along the line of centers must exceed
certain activation energy.

In the case of hard-sphere elastic encounters between a pair of par-
ticles from species r and s, the relative velocity V =v −w before collision
takes the post-collisional value V ′ =v′ −w′ (see Fig. 1):

〈n, v′ −w′〉=−〈n, v −w〉, 〈τ, v′ −w′〉= 〈τ, v −w〉, (12)
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Fig. 1. Model for elastic and reactive collision between hard spheres (diameter dr , ds ) in the
relative motion reference frame.

where 〈·, ·〉 is the inner product in R
3, n is the unit vector along the line

passing through the centers of the spheres at the moment of impact (apse
line), i.e., n∈S

2+ ={n∈R
3 : |n|=1, 〈n, v−w〉�0}. In (12), τ denotes the unit

vector orthogonal to n in the plane of the relative motion. Then conser-
vations of momentum and kinetic energy lead to the following expressions
for post-collisional velocities

v′ =v −2
µrs

mr

n〈n, v −w〉, w′ =w +2
µrs

ms

n〈n, v −w〉. (13)

As in (7), µrs =mrms/(mr +ms) is the reduced mass of the colliding pair,
where mr and ms are the masses of particles from rth and sth species,
respectively. We note that in (13) the unit vector n, in the direction of
the apse line, is used to describe the post-collisional velocities appearing
in the collisional terms of the SRS model, while the unit vector �′, in the
direction of the relative post-collisional velocity, is used in Rossani–Spiga
model.

The reactive encounters are accounted differently in the SRS and
Rossani–Spiga models. The starting point in both cases is the conservation
of momentum and total energy (the kinetic energy is not conserved in the
reactive collisions). By designating the reaction A1 + A2 → A3 + A4 as an
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endothermic, we have

1
2
µ12 g2 = 1

2
µ34(g

′)2 +�E, (14)

where g =|v −w| and g′ = |v′ −w′|.
In the case of the SRS model (hard-sphere-like collisions) the conser-

vation of the tangential component of the relative velocity

〈τ, v′ −w′〉= 〈τ, v −w〉, (15)

together with (14) yield

(g′
n)2 = (〈n, v′ −w′〉)2

= (〈τ, v −w〉)2 µ12 −µ34

µ34
+ µ12

µ34

(
(〈n, v −w〉)2 − 2�E

µ12

)
. (16)

We point out that similar conditions can be also found in the kinetic
equations for granular media. In such theories in-elasticity of collisions
between grains is modeled by reducing the normal relative velocity after
collision by a restitution factor (see for instance ref. 12 and the references
therein).

The right-hand-side of (16) must be nonnegative, thus the equation
(16) implicitly defines a condition for the reactive collision to occur.

At this point two simplifications take place in the SRS model: there
is no hard-sphere diameter change upon reaction, implying σ12 =σ34, and
there is no net mass exchange in the reaction (m1 = m3, m2 = m4). We
note that the former assumption (see refs. 2 and 8) avoids complications in
dealing with overlapping configurations, while the latter implies µ12 =µ34.
As the result of these assumptions the expression in (16) reduces to

〈n, v′ −w′〉=−
√

(〈n, v −w〉)2 − 2�E

µ12
=α−. (17)

We note that the minus sign in front of the square root reduces (17) to the
first identity in (12) when �E =0. From (17), the energy threshold for the
reactive collision to take place must be such that (〈n, v−w〉)2 � 2�E/µ12,
or in terms of the kinetic energy associated with the relative motion along
the line of centers

1
2
µ12

(〈n, v −w〉)2 �γ12, (18)
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with γ12 =γ21 ��E >0. Finally, using the same notation as in ref. 13, the
endothermic reaction velocities v, w take their post-reactive values

v‡ =v − µ12

m1
n
[
〈n, v −w〉−α−

]
, w‡ =w + µ12

m2
n
[
〈n, v −w〉−α−

]
.

(19)

Analogously for the inverse exothermic reaction A3 + A4 → A1 + A2, the
post-reactive velocities are given by

v† =v − µ34

m3
n
[
〈n, v −w〉−α+

]
, w† =w + µ34

m4
n
[
〈n, v −w〉−α+

]
,

(20)

with α+ = −
√(〈n, v −w〉)2 +2�E/µ34, and the activation energy for A3

and A4 given by γ34 =γ43 =γ12 −�E.
The dilute-gas SRS kinetic system has the form

∂fi

∂t
+v

∂fi

∂x
=JE

i +JR
i , i =1, . . . ,4, (21)

with

JE
i =

4∑
s=1

{
σ 2

is

∫∫
R3×S2

[
fi(t, x, v′)fs(t, x,w′)−fi(t, x, v)fs(t, x,w)

]
�(〈n, v −w〉) 〈n, v −w〉dn dw

}
(22)

−βijσ
2
ij

∫∫
R3×S2

[
fi(t, x, v′)fs(t, x,w′)−fi(t, x, v)fs(t, x,w)

]
�
(〈n, v −w〉−�ij

) 〈n, v −w〉dn dw,

and

JR
i = βijσ

2
ij

∫∫
R3×S2

[
fk(t, x, v�

ij )fl(t, x,w�
ij )−fi(t, x, v)fj (t, x,w)

]
�
(〈n, v −w〉−�ij

) 〈n, v −w〉dn dw. (23)

Here, �ij =√2γij /µij , and, as before, � is the Heaviside step func-
tion. The coefficients 0�βij =βji <1 are the steric factors for reactive col-
lisions between species i and j ; they represent the fractions of energetic
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enough pre-collisional pairs that actually undergo the reactions. The prime
velocities in (22) are given in (13). The pair of velocities (v�

ij ,w�
ij ) refers

to post-reactive velocities described either in (19) or (20), i.e., (v�
ij ,w�

ij )=
(v‡,w‡) for i, j = 1,2, and (v�

ij ,w�
ij ) = (v†,w†) for i, j = 3,4. Also, the

index pairs (i, j) and (k, l) appearing in (23) are associated with the set
of indices (i, j, k, l) given in (5).

We note that the first term of (22) is the hard-spheres collision oper-
ator with the usual pre-collisional range of integration, while the second
term of (22) singles out those pre-collisional states that are energetic enough
to result in reaction. The collision operator in (23) is purely reactive.

4. CONSTRUCTION OF ROSSANI–SPIGA’S SCATTERING KERNELS

There are two drawbacks of the SRS model: no net mass and no
hard sphere diameters changes in the reactions. Moreover, at present, it
is not clear how to remove these assumptions from the SRS kinetic the-
ory and still preserve its simplicity. Instead, we start with the hard-sphere-
like collisions of the SRS model, in which the tangential components of
the relative velocities before and after reaction are preserved (see iden-
tity (15)), but as in the Rossani–Spiga approach, we use the unit vector
of the post-collisional relative velocity �′, to find the expressions for the
corresponding reactive scattering kernels. This approach, however, requires
introduction of the reactive diameters of molecules involved in the reac-
tion. In general, these (fictitious) reactive diameters are different from the
nonreactive mean diameters of the molecules (see, for example, ref. 14).
Finally, as an application of our construction, we reproduce the reactive
scattering kernels for the SRS model in the Rossani–Spiga formalism and
compute the total reactive cross sections for both models.

The SRS and Rossani–Spiga models use different quantities to repre-
sent the scattering kernels. The apse line n is used in the former, while the
unit vector of the post-collisional relative velocity �′ is employed in the
latter model. The quantity that gives the number of molecules involved in
a collision is gb db dϕ = B d�′, where b is the impact parameter, ϕ is an
azimuthal angle specifying the position of the plane of the relative motion
in space, and B is defined as B = (g b |∂b/∂χ |)/ sin χ , with χ deflection
angle(15). The quantity gb db dϕ is the volume per unit of time of the
so called collisional cylinder associated with the particular collision under
construction(16).

Now, as in the SRS model, we consider a mixture of four spe-
cies, Ai, i =1,2,3,4, undergoing reactive interactions that occur when the
kinetic energy associated with the relative motion along the line of centers
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exceeds certain activation energy. Furthermore, the reactions take place
when the particles are separated by a distance σ̃ij = 1

2 (d̃i + d̃j ), where d̃i

is the reactive (fictitious) diameter of particle i (14). As before, the reac-
tive mean diameters σ̃ij of the pre-collisional pairs, associated with the
set in (5), enjoy the natural symmetry relations σ̃ij = σ̃j i . Using the geom-
etry of the collision (see Fig. 1), we have b= σ̃ij sin θ , with 0� θ �π/2;
this yields b db dϕ = σ̃ 2

ij cos θ dn, and then, as in the SRS framework, we
require

g b db dϕ = σ̃ 2
ij 〈n, v −w〉dn=Bhk

ij (g, cosχ)d�′. (24)

Here, 〈n, v − w〉�0, cosχ = � · �′, and the pre-collisional pair (i, j)

and the post-collisional pair (h, k) are associated with the set of indi-
ces (i, j, h, k) given in (5). The identity (24) constitutes a bridge between
the SRS and Rossani–Spiga formulations. Furthermore, determination of
b(g,χ) in (24) together with the relation B = (b|∂b/∂χ |)/ sin χ will result
in the expressions for the scattering kernels Bhk

ij (g, cosχ) in the Rossani–
Spiga kinetic theory.

For the A1 +A2 →A3 +A4 reaction, the relative speed after collision

is given by g′ =g34
12 =

√
µ12/µ34

(
g2 − δ34

12

)
with g2 � δ34

12 = 2�E/µ12. As in
the SRS model, dissipation of the kinetic energy is specified by (15) and
(16). Our aim is to express the impact parameter, and then the scattering
kernel, in terms of cosχ and g. We have,

cosχ = 〈v −w,v′ −w′〉
g g′

=
(〈τ, v −w〉)2 −〈n, v −w〉

√
(〈τ, v −w〉)2 µ12 −µ34

µ34
+ µ12

µ34

(
(〈n, v −w〉)2 − 2�E

µ12

)

g

√
µ12

µ34

(
g2 − 2�E

µ12

) .

(25)

The relations (see Fig. 1)

〈τ, v −w〉=g sin θ, 〈n, v −w〉=g cos θ, and sin θ = b

σ̃12
,

(26)
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yield

cosχ = 1√
µ12
µ34

(
g2 − 2�E

µ12

)
{

g

(
b

σ̃12

)2

−
√[

1−
(

b

σ̃12

)2 ][
µ12

µ34

(
g2 − 2�E

µ12

)
−g2

(
b

σ̃12

)2] . (27)

The argument in the square root appearing in the numerator of equation
(27) is nonnegative if

sin θ = b

σ̃12
� min

{
1,

1
g

√
µ12

µ34

(
g2 − 2�E

µ12

)}
=min

{
1,

g34
12

g

}
. (28)

This bound corresponds to the condition needed for (16) to be well
defined (i.e. (〈n, v′ − w′〉)2 �0). Moreover, when (28) holds, cosχ is an
increasing continuous function of b/σ̃12 �0 (as physically expected) with
the range

−1� cosχ � min

1
g

√
µ12

µ34

(
g2 − 2�E

µ12

)
,

[
1
g

√
µ12

µ34

(
g2 − 2�E

µ12

)]−1


= min

{
g34

12

g
,

g

g34
12

}
=�34

12. (29)

The upper bound for cosχ is essentially given by the ratio between g′ and
g (that could be less or greater than 1 depending on the relation between
the reduced masses) and represents an effective constraint on the deflection
angle for the chemical reaction to occur.

In the case of the SRS model, i.e., when µ12 =µ34 (implying m1 =
m3, m2 =m4), �34

12 in the right-hand side of (29) becomes �34
12 =√

g2 −2/�E/µ12/g, which corresponds to the required threshold energy,
〈n, v − w〉�

√
�E/µ12 of the original SRS model (see, also inequality

(18)).
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Now, from (27), the impact parameter b, in terms of g and χ , is given
by

b(g,χ)

= σ̃12


µ12
µ34

(
g2 − 2�E

µ12

)
sin2 χ(

g −
√

µ12
µ34

(
g2 − 2�E

µ12

))2

+2g(1− cosχ)

√
µ12
µ34

(
g2 − 2�E

µ12

)


1/2

,

(30)

for χ satisfying inequality (29).
Finally, differentiation of the right side (30) with respect to χ yields

the expression for the scattering kernel B34
12 :

B34
12 (g,χ)=g b

∣∣∣ ∂b
∂χ

∣∣∣
sin χ

=g σ̃ 2
12�(g2 − δ34

12)�(�34
12 − cosχ)

×
µ12
µ34

(
g2 − 2�E

µ12

){
g

√
µ12
µ34

(
g2 − 2�E

µ12

)
(1+ cos2 χ)− cosχ

[
g2 + µ12

µ34

(
g2 − 2�E

µ12

)]}
[(

g −
√

µ12
µ34

(
g2 − 2�E

µ12

))2

+2g(1− cosχ)

√
µ12
µ34

(
g2 − 2�E

µ12

)]2
.

(31)

The scattering kernel B34
12 (g,χ) is positive if (29) holds. In the case

of the SRS model, i.e., when µ12 = µ34, the expression for the scattering
kernel becomes:

B34
12

SRS
(g,χ)=g σ̃ 2

12�
(
g −

√
2�E/µ12

)
�

(√
g2 −2�E/µ12

g
− cosχ

)

×g(g2−2�E/µ12)
3/2(1+cos2 χ)−(g2−2�E/µ12)(2g2−2�E/µ12) cosχ(

2g2 −2�E/µ12 −2g
√

g2 −2�E/µ12 cosχ
)2 .

(32)

Very similar arguments yield the expression for B12
34 (g, cosχ) in the

reaction A3 + A4 → A1 + A2. Indeed, the relative speed after collision is
given by g′ = g12

34 =
√

µ34
µ12

(
g2 − δ12

34

)
, where δ12

34 = −2�E/µ34 and the SRS-
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like collision mechanism is defined by (15) and by

(g′
n)2 = (〈n, v −w′〉)2

= (〈τ, v −w〉)2 µ34 −µ12

µ12
+ µ34

µ12

(
(〈n, v −w〉)2 + 2�E

µ34

)
. (33)

As before, from (26), we get the expression for cosχ similar to (27),

cosχ = 1√
µ34
µ12

(
g2 + 2�E

µ34

)
×
g

(
b

σ̃34

)2

−
√[

1−
(

b

σ̃34

)2 ][
µ34

µ12

(
g2 + 2�E

µ34

)
−g2

(
b

σ̃34

)2] ,

(34)

which is well defined for

b

σ̃34
� min

{
1,

1
g

√
µ34

µ12

(
g2 + 2�E

µ34

)}
=min

{
1,

g12
34

g

}
. (35)

Again, cosχ is an increasing function of b/σ̃34 with the range

−1� cosχ � min

1
g

√
µ34

µ12

(
g2 + 2�E

µ34

)
,

[
1
g

√
µ34

µ12

(
g2 + 2�E

µ34

)]−1


= min

{
g12

34

g
,

g

g12
34

}
=�12

34. (36)

Following the steps described above for the direct reaction, we finally get
the expression for the scattering kernel B12

34 (g, cosχ)

B12
34 (g,χ)=g σ̃ 2

34�(�12
34 − cosχ)

×
µ34
µ12

(
g2 + 2�E

µ34

){
g

√
µ34
µ12

(
g2 + 2�E

µ34

)
(1+ cos2 χ)− cosχ

[
g2 + µ34

µ12

(
g2 + 2�E

µ34

)]}
[(

g −
√

µ34
µ12

(
g2 + 2�E

µ34

))2

+2g(1− cosχ)

√
µ34
µ12

(
g2 + 2�E

µ34

)]2
.

(37)



On Two Kinetic Models for Chemical Reactions 225

The scattering kernel B12
34 (g,χ) is positive if (36) holds. As before, in the

SRS case, i.e., when µ12 =µ34, kernel (37) becomes

B12
34

SRS
(g,χ)=g σ̃ 2

34�

(
g√

g2 +2�E/µ12
− cosχ

)

×g(g2+2�E/µ12)
3/2(1+cos2 χ)−(g2 +2�E/µ12)(2g2 +2�E/µ12) cosχ(

2g2 +2�E/µ12 −2g
√

g2 +2�E/µ12 cosχ
)2 .

(38)

The expressions (31) and (37) were obtained only from the geometry of
the reactive encounters and the identities (24). These expressions can be
put in the following compact form

Bhk
ij (g,χ) = gIhk

ij (g,� ·�′)=g σ̃ 2
ij�(g2 − δhk

ij )�(�hk
ij − cosχ)

×
(ghk

ij )2
{
g ghk

ij (1+ cos2 χ)− cosχ
[
g2 + (ghk

ij )2
]}

[(
g −ghk

ij

)2 +2g(1− cosχ)ghk
ij

]2
(39)

for (i, j, h, k) belonging to the set (5), and ghk
ij given in (8).

Now, it is easy to check that B34
12 (g,χ) and B12

34 (g,χ) satisfy the rela-
tion

gB34
12 (g,� ·�′)= σ̃ 2

12

σ̃ 2
34

g34
12 B12

34 (g34
12,� ·�′) (40)

for g2 > δ34
12. Thus, the scattering kernels (31) and (37) obey the micro-

reversibility conditions (10) if the following relation between the reactive
mean diameters and reduced masses is satisfied:

σ̃12µ12 = σ̃34µ34. (41)

We note that condition (41) is a natural generalization of the two assump-
tions used in the original SRS model: no net mass and no hard sphere
diameter changes in the reactions.

The scattering kernels given in (39), together with the property (41),
provide the first, physically plausible, realization of the reactive kinetic the-
ory(4).

We point out that although the microreversibility conditions (10) do
not appear explicitly in the original SRS model, it can be traced back to
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the equality

β12σ
2
12 =β34σ

2
34. (42)

The equality (42) holds for the SRS kinetic model and, at the same time,
it can be considered as a weaker form of the conditions σ12 = σ34 and
β12 =β34. Indeed, the condition (42) together with the equality of reduced
masses before and after reaction (µ12 = µ34), guarantees the existence of
an H -function (see, Proposition 3.1 in ref. 13) in the SRS model.

Finally, the expressions for the elastic kernels of the Rossani–Spiga
model can be obtained from (39) when �E = 0 (no reactions) and σ̃ij is
replaced by σ̄ij , where σ̄ij are proper elastic mean diameters. We have

Bij (g,χ)=B
ij
ij (g,χ)=g σ̄ 2

ij /4 (43)

for i, j =1, . . . ,4, where �′ becomes now the direction ω of the outgoing
relative velocity for the elastic scattering (see Fig. 1).

The scattering kernels (32) and (38), together with (43), reproduce the
reactive and elastic scattering kernels for the SRS model in the Rossani–
Spiga formalism.

An interesting consistency result can be found by computing the total
(angle integrated) reactive cross sections for both models, that for the
Rossani–Spiga model reads as

Î
hk
ij (g)=

∫
S2

Ihk
ij (g,� ·�′)d�′, (44)

where Ihk
ij (g,� ·�′) is the differential cross section given in (39), whereas

for the original SRS model, the total cross sections are given by

βijσ
2
ij

1
g

∫
S2

�
(〈n, v −w〉−�ij

) 〈n, v −w〉dn. (45)

The integral in the right-hand side of (44) reduces to the integration of a
rational function, indeed, the substitution cosχ =µ yields

Î
hk
ij (g)=2πσ̃ 2

ij (g
hk
ij )2�(g2 − δhk

ij )

∫ �hk
ij

−1

gghk
ij − [g2 + (ghk

ij )2]µ+gghk
ij µ2

[(g +ghk
ij )2 −2gghk

ij µ]2
dµ

(46)
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(with �hk
ij given in (29) and (36)) which, upon setting α= g2+(ghk

ij )2

2gghk
ij

>1, gives

Î
hk
ij (g) = π

2
σ̃ 2

ij�(g2 − δhk
ij )

ghk
ij

g

∫ �hk
ij

−1

[
1− α2 −1

(µ−α)2

]
dµ

= π

2
σ̃ 2

ij�(g2 − δhk
ij )

ghk
ij

g

1− (�hk
ij )2

α −�hk
ij

. (47)

The result depends thus on whether ghk
ij <g or ghk

ij >g, and reads as

Î
hk
ij (g)=

πσ̃ 2
ij�(g2 − δhk

ij )

(
ghk
ij

g

)2

for ghk
ij <g,

πσ̃ 2
ij�(g2 − δhk

ij ) for ghk
ij >g.

(48)

In the SRS case, in particular, for the endothermic reaction A1 + A2 →
A3 +A4 we have always g34

12 =
√

g2 −2�E/µ12 <g and then

Î
34
12(g)=πσ̃ 2

12�(g2 −2�E/µ12)

(√
g2 −2�E/µ12

g

)2

, (49)

whereas for the exothermic reaction A3 + A4 → A1 + A2 we have g12
34 =√

g2 +2/�E/µ34 >g and then

Î 12
34(g)= σ̃ 2

34π. (50)

It is easy to check that the equivalent conclusion for the original SRS
model (with γ12 =�E) is obtained from (45), which uses n instead of �′
as integration variable. Indeed the final expressions coincide with (49) and
(50) only with βijσ

2
ij replacing σ̃ 2

ij .
These results for the SRS model (in both representations) have a clear

physical interpretation since, for the endothermic reaction, the total geo-
metrical sectional area πσ̃ 2

12 is not entirely available to chemical reaction.
In fact, the almost grazing collisions are forbidden due to the energy
threshold on the normal component of the relative speed (in other words,
there is like a shade on a ring close to the border). This does not apply to
the exothermic case, since the previous threshold does not exist. Here the
whole collision area is allowed and � ·�′ is restricted only because of the
energy gain. In general then the angle integrated reactive cross sections for
hard spheres depend on the relative speed, contrary to the elastic case, in
which it is well known that it is a constant.
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The Rossani–Spiga representation of the reactive interactions of the
original SRS model, provided by the scattering kernels (32) and (38),
establishes a link between the two kinetic theories. In order, however, for
the model (2)–(3)–(11) to become the SRS kinetic system (21)–(22)–(23)
(with γ12 = �E and γ34 = 0), the reactive scattering kernels B34

12
SRS

(g,χ)

and B12
34

SRS
(g,χ), need to be appended by further relationships relat-

ing mean diameters and steric factors. In addition, the range of integra-
tion in the elastic collisional integrals (3) with the kernels Bij given in
(43) must exclude those pre-collisional states that are energetic enough to
result in reaction (the second term of the elastic collisional term (22)).
In the SRS kinetic model, the restriction on pre-collisional velocities of
the elastic encounters eliminates situations in which certain pairs of par-
ticles can undergo simultaneously both reactive and elastic collisions. In
the Rossani–Spiga model, a superposition of two independent, elastic and
reactive, interaction potentials is employed, with no apparent restrictions
imposed on pre-collisional velocities of the elastic encounters. Thus, the
SRS model suggests a new variant of the reactive kinetic theory, where
some of the elastic collisional contributions are introduced differently in
order to account for situations in which certain pairs of particles can
undergo simultaneously both reactive and elastic collisions. Such modified
elastic and reactive collisional terms have the form

JEm
i =

4∑
j=1

∫∫
R3×S2

Bij (g,� ·�′)

×
[
fi(t, x, v

ij
ij )fj (t, x,w

ij
ij )−fi(t, x, v)fj (t, x,w)

]
dw d�′ (51)

−βij

∫∫
R3×S2

�(g2 − δhk
ij )Bij (g,� ·�′)

×
[
fi(t, x, v

ij
ij )fj (t, x,w

ij
ij )−fi(t, x, v)fj (t, x,w)

]
dw d�′ (52)

and

JRm
i = βij

∫∫
R3×S2

�(g2 − δhk
ij )Bhk

ij (g,� ·�′)

×
[(

µij

µhk

)3

fh(v
hk
ij )fk(w

hk
ij )−fi(v)fj (w)

]
dw d�′, (53)

where the scattering kernels satisfy the symmetry (9) and the microrevers-
ibility (10) conditions. The coefficient 0�βij = βji �1 indicates the frac-
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tion of energetic enough pre-collisional pairs that actually undergo the
reactions. The steric coefficient βij can depend on the threshold energy
and on the macroscopic temperature T (t, x). Also, the pre-collisional (i, j)

and post-collisional (h, k) indices in (52) are associated with the set of
indices (i, j, h, k) given in (5). As in the SRS model, term (52) removes
those pre-collisional configurations that are energetic enough to result in
reaction. Furthermore, the above model reduces itself to the original SRS
kinetic theory (with γ12 =�E and γ34 =0), when Bij are given by (43),

B34
12 =B34

12
SRS

and B12
34 =B12

34
SRS

are given by (32) and (38), respectively,
and the corresponding mean diameters are replaced by the geometrical
ones.

We note that due to the fact that for the elastic encounters the mod-
uli of the pre-collisional and post-collisional relative velocities are identi-
cal (g =g

ij
ij ), the above variant of the reactive kinetic theory enjoys the

same basic properties as the original (2)–(3)–(11) system, i.e., the following
(slightly modified) Theorem 5.1, the H -function (76), and Theorem 5.2.

We observe further that by changing slightly the meaning of the ker-
nels Bij and Bhk

ij in (3) and (11), respectively, the modified collisional
terms (51)–(52)–(53) can be easily accommodated in the original Rossani–
Spiga framework. This would require a proper definition of the (fictitious)
diameters σ̃ij and σ̄ij . Nonetheless, an additional analysis is needed to
clarify consistency and correctness of the above arguments with the par-
ticle system dynamics and/or the macroscopic equations and the corre-
sponding transport coefficients.

Indeed, while the SRS model can be derived from the Liouville equa-
tion (see, refs. 8 and 12), or from the corresponding BBGKY hierarchy
equations, it is not known at this time whether the original Rossani–Spiga
kinetic theory, or its variant (51)–(52)–(53), have their origins in particle
system equations.

5. PROPERTIES OF THE ROSSANI–SPIGA KINETIC THEORY

In this section we derive the properties of the system (2)–(3)–(4) that
play crucial role in the existence results and approach to equilibrium.
Throughout this section, the scattering kernels Bij and Bhk

ij satisfy the fol-
lowing bound

max
0 �λ<2.

 sup
�∈S2

∫
S2

Bij (g,� ·�′)d�′, sup
�∈S2

∫
S2

Bhk
ij (g,� ·�′)d�′


� constant·gλ,0�λ<2. (54)
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Assuming the usual angular cutoff hypothesis (17), the inequality (54) is
satisfied for all inverse power potentials V (r)= r−s with s > 2. The hard-
sphere potential (s =∞) corresponds to λ=1.

We recall that the gas mixture is confined to D ⊆R
3 with D =R

3 or
D being a three-dimensional torus [0,L]3, L> 0. The latter choice corre-
sponds to case of the periodic boundary conditions on [0,L]3.

The conservation of mass, momentum and total energy yield the fol-
lowing crucial property of the Rossani–Spiga system (2)–(3)–(4):

Theorem 5.1. For �i measurable on D ×R
3 and fi(t, ·) ∈ C0(D ×

R
3), i =1, . . . ,4,

4∑
i=1

∫
R3

�iJ
E
i dv = 1

4

4∑
i=1

4∑
j=1

∫∫∫
R3×R3×S2

[
�i(v)+�j(w)−�i(v

ij
ij )−�j(w

ij
ij )
]

×Bij (g,� ·�′)
{
fi(v)+fj (w)−fi(v

ij
ij )−fj (w

ij
ij )
}

dv dw d�′, (55)

4∑
i=1

∫
R3

�iJ
R
i dv =

∫∫∫
R3×R3×S2

�(g2 − δ34
12)
[
�1(v)+�2(w)−�3(v

34
12)−�4(w

34
12)
]

×
{µ12

µ34

g34
12

g
B12

34 (g34
12,� ·�′)f3(v

34
12)f4(w

34
12)

−B34
12 (g,� ·�′)f1(v)f2(w)

}
dv dw d�′, (56)

and

4∑
i=1

∫
R3

�iJ
R
i dv =

∫∫∫
R3×R3×S2

[
�3(v)+�4(w)−�1(v

12
34)−�2(w

12
34)
]

×
{µ34

µ12

g12
34

g
B34

12 (g12
34,� ·�′)f1(v

12
34)f2(w

12
34)

−B12
34 (g,� ·�′)f3(v)f4(w)

}
dv dw d�′. (57)

Proof. The identity (55) is a standard result from inert mixtures (see,
for example, ref. 16). For the proof of (56) and (57) we need the following
lemma.
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Lemma 5.1. The Jacobian of the transformation (v,w,�′) 
→ (
vhk
ij ,

whk
ij ,�

)
has the form

∣∣∣∣∣∂
(
vhk
ij ,whk

ij ,�
)

∂(v,w,�′)

∣∣∣∣∣= µij

µhk

ghk
ij

g
, (58)

where vhk
ij , whk

ij , and ghk
ij are given in (7) and (8), respectively. Here, the

pre-reactive pairs (i, j) and the post-reactive pairs (h, k) are associated
with the following set of indices (i, j, k, l)

(1,2,3,4), (2,1,4,3), (3,4,1,2), (4,3,2,1),

corresponding to all possible reactions Ai +Aj �Ah +Ak.

Proof of Lemma 5.1. First we note that the domain of the trans-
formation (v,w,�′) 
→

(
vhk
ij ,whk

ij ,�
)

is defined by the conditions g2 � δhk
ij

corresponding to the threshold energies for the endothermic reactions.
This fact will be used in the proof of Theorem 5.1.

Now, if

Grs = µrs

ms

v + µrs

mr

w

denotes the velocity of the center-of-mass, (invariant throughout the reac-
tion, i.e., Gij =Ghk), V =v−w, and V hk

ij =vhk
ij −whk

ij are the relative veloc-
ities before and after collision, respectively, then the following equality
holds

∂
(
vhk
ij ,whk

ij ,�
)

∂(v,w,�′)
=

∂
(
Ghk,V

hk
ij ,�

)
∂
(
Gij ,V ,�′) =

∂
(
V hk

ij ,�
)

∂(V,�′)
. (59)

The use of polar coordinates together with V hk
ij =ghk

ij �′,

dV hk
ij d� =

(
ghk

ij

)2
dghk

ij d�′ d�=ghk
ij

µij

µhk

g dg d�d�′ =
ghk

ij

g

µij

µhk

dV d�′,
(60)

proves the lemma.
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For the proof of Theorem 5.1 we consider the first two integrals (i =
1,2) appearing on the left-hand side of (56),∫
R3

�1(v)JR
1 dv =

∫ ∫ ∫
R3×R3×S2

�(g2 − δ34
12)

×
[

µ12

µ34

g34
12

g
B12

34 (g34
12,� ·�′)f3(v

34
12)f4(w

34
12)−B34

12 (g,� ·�′)f1(v)f2(w)

]
×�1(v)dv dw d�′, (61)

∫
R3

�2(v)JR
2 dv =

∫ ∫ ∫
R3×R3×S2

�(g2 − δ43
21)

×
[

µ21

µ43

g43
21

g
B21

43 (g43
21,� ·�′)f4(v

43
21)f3(w

43
21)−B43

21 (g,� ·�′)f2(v)f1(w)

]
×�2(v)dv dw d�′. (62)

After the change of variables (v,w,�′) 
→ (w, v,−�′) and the symmetry
property (9), the right-hand side of (62) becomes∫
R3

�2(v)JR
2 dv =

∫ ∫ ∫
R3×R3×S2

�(g2 − δ34
12)

×
[

µ12

µ34

g34
12

g
B12

34 (g34
12,� ·�′)f3(v

34
12)f4(w

34
12)−B34

12 (g,� ·�′)f1(v)f2(w)

]
×�2(w)dv dw d�′. (63)

In the third integral (i =3) on the left-hand side of (56),∫
R3

�3(v)JR
3 dv =

∫ ∫ ∫
R3×R3×S2

×
[

µ34

µ12

g12
34

g
B34

12 (g12
34,� ·�′)f1(v

12
34)f2(w

12
34)−B12

34 (g,� ·�′)f3(v)f4(w)

]
×�3(v)dv dw d�′ , (64)

we change the variables
(
v12

34,w12
34,�

) 
→ (ṽ, w̃, �̃′), This amounts to revers-
ing the reaction, when g12

34 becomes g̃, g becomes g̃34
12 and the triplet of

variables (v,w,�′) becomes
(
ṽ34

12, w̃34
12, �̃

)
. Now, using Lemma 5.1 together
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with the fact that g̃ � δ34
12, and after dropping all tildes, we obtain,∫

R3

�3(v)JR
3 dv =

∫∫∫
R3×R3×S2

[µ34

µ12

g

g34
12

B34
12 (g,� ·�′)f1(v)f2(w)

−B12
34 (g34

12,� ·�′)f3(v
34
12)f4(w

34
12)
]

×�3(v
34
12)

µ12

µ34
�(g2 − δ34

12)
g34

12

g
dv dw d�=−

∫∫∫
R3×R3×S2

�(g2 − δ34
12)

×
[

µ12

µ34

g34
12

g
B12

34 (g34
12,� ·�′)f3(v

34
12)f4(w

34
12)−B34

12 (g,� ·�′)f1(v)f2(w)

]
×�3(v

34
12)dv dw d�. (65)

In the fourth integral (i =4) on the left-hand side of (56),∫
R3

�4(v)JR
4 dv

=
∫∫∫

R3×R3×S2

[
µ43

µ21

g21
43

g
B43

21 (g21
43,� ·�′)f2(v

21
43)f1(w

21
43)−B21

43 (g,� ·�′)f4(v)f3(w)

]

×�4(v)dv dw d�′, (66)

we perform the same changes that have led to (63) and (65). The result is∫
R3

�4(v)JR
4 dv

=−
∫∫∫

R3×R3×S2

�(g2 − δ34
12)
[µ12

µ34

g34
12

g
B12

34 (g34
12,� ·�′)f3(v

34
12)f4(w

34
12)

−B34
12 (g,� ·�′)f1(v)f2(w)

]
�4(v

34
12)dv dw d�′.

(67)

Finally, we sum up the right-hand sides of (61), (63), (65), and (67) to
obtain the identity (56).

For the proof of (57) we follow the same line of arguments as above.
This time, however, the third integral (i =3) on the left-hand side of
(57), (or equivalently the integral on right-hand side of (64)) is taken
as the reference point. In this process, the variables of integration in
the right-hand side of (61) and (62) are changed from

(
v34

12,w34
12,�

)
and(

v43
21,w43

21,�
)

to (ṽ, w̃, �̃′), and then the integration variables (v,w,�′)
become (ṽ12

34, w̃12
34, �̃) and (ṽ21

43, w̃21
43, �̃).
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Remark 5.1. In view of (54), the assumption that fi(t, ·) ∈ C0(D ×
R

3), for i =1, . . . ,4, is needed to make sure that all integrals exist and are
finite.

Theorem 5.1 yields the following implication,

∀�i(v)=a mi +mi〈b, v〉+ c
(

miv
2

2 +Ei

)
, a, c∈R, b∈R

3

�⇒


∑4

i=1
∫
R3

�iJ
E
i dv =0.

∑4
i=1

∫
R3

�iJ
R
i dv =0.

(68)

In other words, if fi is a nonnegative smooth solution of (2)–(3)–(4) on
[0, T0], T0 > 0, then at least formally, we have the usual conservation laws
of total mass, momentum and total energy, for t ∈ [0, T0]. Indeed, they fol-
low from multiplication of the system (2) by the corresponding �i = mi ,
�i = mi〈v, ek〉 (ek, the basis in R

3), and �i = miv
2/2 + Ei , i = 1, . . . ,4,

integrating with respect to (t, v, x)∈ [0, T0]×D ×R
3, and summing over i.

The result is

4∑
i=1

∫∫
D×R3

mifi(t, x, v)dv dx =
4∑

i=1

∫∫
D×R3

mifi0(x, v)dv dx, (69)

4∑
i=1

∫∫
D×R3

mi 〈v, ek〉fi(t, x, v)dv dx =
4∑

i=1

∫∫
D×R3

mi 〈v, ek〉fi0(x, v)dv dx, (70)

4∑
i=1

∫∫
D×R3

(
miv

2/2+Ei

)
fi(t, x, v)dv dx

=
4∑

i=1

∫∫
D×R3

(
miv

2/2+Ei

)
fi0(x, v)dv dx. (71)

Remark 5.2. It has been furthermore shown (see ref. 9), the collision
invariants �i form a seven-dimensional linear space; in addition to conser-
vation of the total mass, there are also three independent partial sums of
number densities that are conserved. This is related to the balance between
reactants and products in the chemical reaction under consideration.

An additional conservation law (along the characteristics of the
streaming operator) can be obtained by noticing that also �i(x, v)=
mi(x − tv)2/2 +Ei is a collision invariant for any t ∈ [0, T0] and i =1,. . .,4.
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Then we have for t ∈ [0, T0]

4∑
i=1

∫∫
D×R3

(
mi(x − tv)2

2
+Ei

)
fi(t, x, v)dv dx

=
4∑

i=1

∫∫
D×R3

(
mix

2

2
+Ei

)
fi0(x, v)dv dx. (72)

The conservation laws (69)–(72) and non–negativity of fi, fi0 yield the fol-
lowing estimation, which is useful when the spatial domain is equal to D=
R

3,

sup
i

sup
t∈[0,T0]

∫∫
D×R3

x2fi(t, x, v)dv dx � C1 (73)

where C1 >0 depends only on T0, on sup
i

∫∫
D×R3

x2fi dv dx, and on sup
i

∫∫
D×R3

(1+

v2)fi dvdx.
Next, the existence of a Liapunov functional (H-function) follows

from the Theorem 5.1 if the microreversibility conditions (10) are taken
into account. After multiplying (2) by 1 + log f̂i , with f̂i = fi/(m

3
i ) (a

smooth nonnegative solution), integrating over D, summing up over i =
1, . . . ,4, and using (55)–(57) (with �i = 1, log f̂i) we obtain the following
entropy identity

0=
4∑

i=1

d
d t

∫∫
D×R3

fi log f̂i dv dx

+ 1
4

4∑
i,j=1

∫∫∫∫
D×R3×R3×S2

Bij (g,� ·�′) log

 fi(v)fj (w)

fi(v
ij
ij )fj (w

ij
ij )


×
[
fi(v

ij
ij )fj (w

ij
ij )−fi(v)fj (w)

]
dv dw d�′ dx

+
∫∫∫∫

D×R3×R3×S2

�(g2 − δ34
12) log

(
f̂1(v)f̂2(w)

f̂3(v
34
12)f̂4(w

34
12)

)

×
[
B34

12 (g,� ·�′)f1(v)f2(w)− µ12

µ34

g34
12

g
B12

34 (g34
12,� ·�′)f3(v

34
12)f4(w

34
12)

]
× dvdw d�′ dx.

(74)
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The second term in the right-hand side of (74) is nonnegative since the in-
tegrands are of the form (x −1) log x, which is a nonnegative convex func-
tion for x > 0. On the other hand, the integrand appearing in the third
term of (74) is not necessarily nonnegative, however, if we use the micro-
versibility conditions (10), it becomes

�(g2 − δ34
12)B34

12 (g,� ·�′)(m1m2)
3 log

(
f̂1(v)f̂2(w)

f̂3(v
34
12)f̂4(w

34
12)

)
[
f̂1(v)f̂2(w)− f̂3(v

34
12)f̂4(w

34
12)
]
�0. (75)

Thus, for a nonnegative solution fi of (2), the function H(t) defined by

H(t)=
4∑

i=1

∫∫
D×R3

fi log f̂i dv dx (76)

is nonincreasing in t .
The H -function (76), satisfying the identity (74), guarantees that solu-

tions of the Rossani–Spiga model (2)–(3)–(11) tend to equilibrium solu-
tions. Parameters of the equilibrium solutions are the macroscopic quanti-
ties: the number densities ni(t, x), the macroscopic velocity u(t, x), and the
macroscopic temperature T (t, x). They are given by the following standard
expressions:

ni(t, x)=
∫
R3

fi(t, x, v)dv, n(t, x)=
4∑

i=1

ni(t, x), (77)

u(t, x)=

4∑
i=1

mini(t, x)ui(t, x)

4∑
i=1

mini(t, x)

, ui(t, x)=

∫
R3

vfi(t, x, v)dv

ni(t, x)
, (78)

3kn(t, x)T (t, x)=
4∑

i=1

mi

∫
R3

[v −u(t, x)]2 fi(t, x, v)dv, (79)

where k is the Boltzmann constant. As in ref. 4 (see also Proposition 3.2
in ref. 13), the equilibrium solutions are Maxwellians,

fi =ni

( mi

2πkT

)3/2
exp

(
−mi(v −u)2

2kT

)
, i =1, . . . ,4, (80)
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with ni , u, and T given in (77), (78), and (79), respectively. Furthermore,
in the case of the Rossani–Spiga model, the mass action law has the form

n1n2

n3n4
=
(

m1m2

m3m4

)3/2

exp
(

�E

kT

)
. (81)

We observe that the elastic collisional terms (3) are responsible for the
equilibrium solutions to be Maxwellian distributions. Indeed, non-negativ-
ity of both the second term in (74) and term (75) guarantee that, at equi-
librium,

fi(v
ij
ij )fj (w

ij
ij )=fi(v)fj (w), i, j =1,2,3,4, (82)

for all (v,w) for which Bij >0, and

f̂3(v
34
12)f̂4(w

34
12)= f̂1(v)f̂2(w) (83)

for all (v,w) for which B34
12 >0. Next, following Proposition 6.1 of ref. 18,

the identities,

fk(v
kl
kl )fl(w

kl
kl )=fk(v)fl(w), fl(v

kl
kl )fk(w

kl
kl )=fl(v)fk(w) (84)

for fixed k and l, guarantee that the distributions fk and fl are the local
Maxwellians with common macroscopic velocity u(t, x) and common mac-
roscopic temperature T (t, x). Thus, the presence of certain terms JE

ij in the
elastic collisional integrals (3) appears to be necessary for the equilibrium
solutions f1, f2, f3, and f4 to be local Maxwellians, with common veloc-
ity u(t, x) and temperature T (t, x). One such example is provided by JE

1 =
JE

13 + JE
14, JE

2 = JE
24, JE

3 = JE
31, and JE

4 = JE
41 + JE

42. Finally, we note that
identity (83) yields the mass action law (81).

We end this section by stating a global (in time) existence result for
the Rossani–Spiga system (2)–(3)–(11). The idea of the proof is based
on the L1-weak compactness argument and the notion of the renormal-
ized solutions developed by DiPerna and Lions(19) in the context of the
single specie and nonreactive Boltzmann equation. The conservation of
total mass (69), momentum (70), and total energy (71), together with the
entropy identity (74) and (75), imply that nonnegative, smooth solutions
of the system (2)–(3)–(11) satisfy the bound

sup
i

sup
t∈[0,T0]

∫∫
D×R3

(
1+x2 +v2 + log+ fi

)
fi dv dx =CT0 <∞ (85)
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if the following inequality is satisfied,

sup
i

∫∫
D×R3

(
1+x2 +v2 + log+ fi0

)
fi0 dvdx =C0 <∞ (86)

for nonnegative initial distributions fi0. As in the case of the Boltzmann
equation (see also ref. 13 for the SRS model), the inequality (85) implies
that the family of solutions {fi(t) : 0� t �T0} is relatively weakly compact
in L1(D×R

3). Furthermore, there can be no infinite concentration of den-
sities in the system described by (2)–(3)–(11).

Definition 5.1. Nonnegative fi ∈L1
loc((0, T0)×D ×R

3) (i =1,2,3,4)
are renormalized solutions of (2)–(3)–(11) if

1
1+fi

JE±
i ∈L1

loc((0, T )×D ×R
3),

1
1+fi

JR±
i ∈L1

loc((0, T )×D ×R
3)

(87)

and

∂

∂t
log(1+fi)+v

∂

∂x
log(1+fi)= 1

1+fi

[
JE

i +JR
i

]
(88)

in D′((0, T )×D ×R
3), where

JE
i =JE+

i −JE−
i , J R

i =JR+
i −JR−

i (89)

with JE±
i and JR±

i are given in (3) and (11), respectively.

The following global existence result is true:

Theorem 5.2. Assume that the scattering kernels Bij and B
ij
hk satisfy

the conditions (54). If for i = 1,2,3,4, fi0 �0 satisfy condition (86) then
there exists a nonnegative renormalized solution fi of (2)–(3)–(11) with
fi ∈C([0, T0];L1(D ×R

3)) satisfying (85), and such that fi(t)
∣∣
t=0=fi0 for

i =1,2,3,4.

Proof of Theorem 5.2. It follows similar arguments as in ref. 13.
The main idea is to find suitable approximations JE

in and JR
in of JE

i and
JR

i , respectively, for which the system,

∂f n
i

∂t
+v · ∂f n

i

∂x
= JE

in +JR
in, f n

i (0, x, v)=f n
i0(x, v),

i = 1, . . . ,4, (x, v)∈D ×R
3, (90)
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is easily solvable by known methods for n = 1,2, . . . . Next, one shows
that the weak limits f n

i → fi are renormalized solutions of (2)–(3)–(11).
The crucial passage to the limit is based on the DiPerna-Lions arguments
found in ref. 19. For completeness, we provide, below, an example of suit-
able approximations of the collisional terms that allow for this passage to
the limit to take place:

JE
in =

(
1

1+ 1
n

∑4
i=1
∫

R3 f n
i dv

)
4∑

j=1

∫∫
R3×S2

Bn
ij (g,� ·�′)

×
[
f n

i (t, x, v
ij
ij )f n

j (t, x,w
ij
ij )−f n

i (t, x, v)f n
j (t, x,w)

]
dw d�′ (91)

and

JR
in =

(
1

1+ 1
n

∑4
i=1
∫

R3 f n
i dv

) ∫∫
R3×S2

�(g2 − δhk
ij )(Bhk

ij )n(g,� ·�′)

×
[(

µij

µhk

)3

f n
h (vhk

ij )f n
k (whk

ij )−f n
i (v)f n

j (w)

]
dw d�′, (92)

where

Bn
ij (g,� ·�′)=

{
Bij (g,� ·�′) if v2 +w2 �n,
0, otherwise

(93)

for i =1,2,3,4,

(B12
34 )n(g,� ·�′)=

{
B12

34 (g,� ·�′) if v2 +w2 �n,
0 otherwise

(94)

and

(B34
12 )n(g,� ·�′)=

(
g34

12

g

)(
µ34

µ12

)2

(B12
34 )n(g34

12,� ·�′) (95)

with (B43
21 )n =(B34

12 )n and (B21
43 )n =(B12

34 )n. It is easy to check that the above
approximated kernels Bn

ij and (Bhk
ij )n are bounded and converge pointwise
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to Bij and Bhk
ij , respectively, as n→∞. Furthermore, they satisfy the sym-

metry relations (9), while the reactive approximated kernels satisfy the mi-
croreversibility conditions (10). Thus, Theorem 5.1 holds for the approxi-
mated system (90) and the function H(t) defined in (76) is its H -function.
From now on the proof follows very similar arguments as in refs. 13 and
19.

It is an open problem whether the system (2)–(3)–(4) possesses a solu-
tion. As in the case of the nonreactive spatially inhomogeneous Boltzmann
equation, the weak compactness argument in L1, followed from existence
of an H -function, is used to obtain a renormalized solution for the sys-
tem (2)–(3)–(11). Without the microreversibility conditions (10), it is not
known whether the system (2)–(3)–(4) possesses an H -function, and thus
the question of existence cannot be settled at present time.

In ref. 20, Mischler and Wennberg shown that for any initial data
with finite mass and energy, there exists a unique (global in time) solu-
tion to the nonreactive spatially homogeneous Boltzmann equation (for
one specie) for which these two quantities are conserved in time. Whether
these techniques work for the spatially homogeneous version of the system
(2)–(3)–(4) is currently under investigation.
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